以下全是凑字数的——
九章算术》早期文本的编纂时间及经过,历代聚讼,众说不一,目前为止,最明确而中肯的论定还是出自刘徽的《九章算术注·原序》:昔在庖牺氏始画八卦,以通神明之德,以类万物之情,作九九之术,以合六爻之变。……按:周公制礼而有九数,九数之流,则《九章》是矣。往者暴秦焚书,经术散坏。自时厥后,汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论者多近语也。郭书春认为刘徽关于《九章算术》编纂的论述是完全正确的。他说:“《九章算术》由先秦‘九数’发展而来的,是张苍、耿寿昌在先秦遗文的基础上先后整理、加工、增补而成的,它的最后编定者是耿寿昌,时在公元前一世纪中叶。”但在早期文本的流传过程中书名的确定尚存诸多疑点,据现有史料推测,《九章算术》书名出现应晚于文本的编定,约于公元一世纪后期。[7]1984年,在湖北出土了《算数书》书简。据考证,它比《九章算术》要早一个半世纪以上,书中有些内容和《九章算术》非常相似,一些内容的文句也基本相同。有人推测两书具有某些继承关系,但也有不同的看法认为《九章算术》没有直接受到《算数书》影响。
数形结合数学和形是数学中最基本的原始概念,《九章算术》开创了中国古代数学中数形结合的独特的研方法其现用的计来解的研究论题如“开方”“开立”种种平面图形和立体图形的求积问题,都用数的计算,即着重于考察图形中的数的关系,算出确定的数值。同时亦用形的直观来解释数的算法如对“开方”“开立”等为以图形作解释打下基础(实际的解释是刘徽完成的,在刘徽的注文中,更发展为“析理以释解体用图”的系统方法)。数形结合的思想有助于数学的各个领域的融汇贯通,有助于发挥数学思维的整体性,使之更为深刻,灵活,是现代数学教学中强调的基本数学思想之一。[11]模型化思想数学模型是为了解决现实世界问题而建立的,数学模型是人们认识原型的方式之一。结合方程,构建数学模型数学应用问题是包含了一个或多个数量关系的具体情节或事件,解决数学应用问题的过程就是从情节中抽象并理顺数量关系的过程,方程是有效地表达、处理、交流和传递信息的工具,是反映客观事物数量变化规律的一种模型。数学应用问题可以以方程为途径,构建数学模型来解决,在这种情况下所构建的就是方程模型。
数学模型是为了解决现实世界问题而建立的,数学模型是人们认识原型的方式之一。结合方程,构建数学模型数学应用问题是包含了一个或多个数