相比于parank算法对网页超链接抓取排序。
有了gtsa算法,谷歌可以更进一步直接对parank算法下排名靠前的网页内容进行抓取获取相应的信息。
按照信息和搜索关键词的关键度再进行二次精确排序。
这无疑可以大大提高谷歌搜索的准确度。
尽管以现在的技术将生成式文本摘要算法嵌套在parank算法之下还很难保证搜索高效率。
但谁能保证未来的服务器以及计算力水平不会突飞猛进呢?
万一之后技术能够暴涨呢?
而且就算短时间内谷歌无法将该技术用于搜索领域。
生成式文本摘要算法表现出的强大的文字处理能力也是很值得谷歌重视的技术。
反正从谷歌下达的任务的措辞来看。
对于生成式文本摘要算法,谷歌不仅重视。
而且急切渴望获得该技术。
……
然而作为具体的执行人员,对于谷歌提出的任务:
——评估lhui提出的算法实现的可行性,并根据实际情况考虑能否短时间实现复现
伊芙·卡莉就很无语。
或许在那些屁股决定脑袋的人心中。
清楚技术路线了,技术复现能够实现与否只是时间长短的问题了。
但事实哪有那么简单。
反正进行了一晚上尝试的伊芙·卡莉发现想要进行复现很难。
抛开lhui提出的算法技术本身不谈。
就是lhui在生成式摘要算法专利中顺手牵羊搞定的那个“lh文本摘要准确度衡量模型”
其他团队想要从无到有的构建一个同样的模型都有亿点困难。
说起来lh文本摘要准确度衡量模型的构建过程思路倒是很清晰:
第一,运用语言模型来评估算法生成语言的流畅度;
第二,使用相似度模型评估文本和摘要之间的语义相关性;
第三,为了有效评估实体、专有词的复现程度,引入原文信息量模型来评估。
然鹅也仅仅是说起来很简单而已。
说到把大象放进冰箱也很简单同样是三步:
——打开冰箱门,放进大象,关上冰箱门。
知道怎么做没用,关键还是要执行。
没办法执行的话,步骤再清晰也没用。
lh文本摘要准确度衡量模型的构建过程有三步。
第一步就很复杂。
该怎么进行语言模型的构建呢?
语言模型建模过程中,包括词典、语料、模型选择等。